Nonnegative determinant of a rectangular matrix: Its definition and applications to multivariate analysis1
نویسندگان
چکیده
It is well known that the determinant of a matrix can only be defined for a square matrix. In this paper, we propose a new definition of the determinant of a rectangular matrix and examine its properties. We apply these properties to squared canonical correlation coefficients, and to squared partial canonical correlation coefficients. The proposed definition of the determinant of a rectangular matrix allows an easy and straightforward decomposition of the likelihood ratio when given sets of variables are partitioned into row block matrices. The last section describes a general theorem on redundancies among variables measured in terms of the likelihood ratio of a partitioned matrix.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملOn the construction of symmetric nonnegative matrix with prescribed Ritz values
In this paper for a given prescribed Ritz values that satisfy in the some special conditions, we find a symmetric nonnegative matrix, such that the given set be its Ritz values.
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملIs My System of Odes Cooperative?
An n-dimensional system of ODEs x′ = f(x) is said to be a cooperative system in canonical form if either it’s Jacobian matrix has nonnegative off-diagonal entries or there is an integer k with 1 ≤ k < n and the sign structure of the Jacobian, throughout its domain, has k×k and (n−k)× (n−k) main diagonal matrices with nonnegative off-diagonal entries and that the rectangular off-diagonal sub-mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005